Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(2)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38397433

RESUMEN

A strictly aerobic, Gram-stain-negative, rod-shaped, and motile bacterium, designated strain KMM 296, isolated from the coelomic fluid of the mussel Crenomytilus grayanus, was investigated in detail due to its ability to produce a highly active alkaline phosphatase CmAP of the structural family PhoA. A previous taxonomic study allocated the strain to the species Cobetia marina, a member of the family Halomonadaceae of the class Gammaproteobacteria. However, 16S rRNA gene sequencing showed KMM 296's relatedness to Cobetia amphilecti NRIC 0815T. The isolate grew with 0.5-19% NaCl at 4-42 °C and hydrolyzed Tweens 20 and 40 and L-tyrosine. The DNA G+C content was 62.5 mol%. The prevalent fatty acids were C18:1 ω7c, C12:0 3-OH, C18:1 ω7c, C12:0, and C17:0 cyclo. The polar lipid profile was characterized by the presence of phosphatidylethanolamine, phosphatidylglycerol, phosphatidic acid, and also an unidentified aminolipid, phospholipid, and a few unidentified lipids. The major respiratory quinone was Q-8. According to phylogenomic and chemotaxonomic evidence, and the nearest neighbors, the strain KMM 296 represents a member of the species C. amphilecti. The genome-based analysis of C. amphilecti NRIC 0815T and C. litoralis NRIC 0814T showed their belonging to a single species. In addition, the high similarity between the C. pacifica NRIC 0813T and C. marina LMG 2217T genomes suggests their affiliation to one species. Based on the rules of priority, C. litoralis should be reclassified as a later heterotypic synonym of C. amphilecti, and C. pacifica is a later heterotypic synonym of C. marina. The emended descriptions of the species C. amphilecti and C. marina are also proposed.


Asunto(s)
Fosfatasa Alcalina , Halomonadaceae , Adolescente , Niño , Humanos , Fosfatasa Alcalina/genética , ARN Ribosómico 16S/genética , Halomonadaceae/genética , Ácidos Grasos/química , Colorantes , Filogenia , ADN Bacteriano/genética , ADN Bacteriano/química
2.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38068891

RESUMEN

The marine-derived fungal strains KMM 4718 and KMM 4747 isolated from sea urchin Scaphechinus mirabilis as a natural fungal complex were identified as Penicillium sajarovii and Aspergillus protuberus based on Internal Transcribed Spacer (ITS), partial ß-tubulin (BenA), and calmodulin (CaM) molecular markers as well as an ribosomal polymerase two, subunit two (RPB2) region for KMM 4747. From the ethyl acetate extract of the co-culture, two new polyketides, sajaroketides A (1) and B (2), together with (2'S)-7-hydroxy-2-(2'-hydroxypropyl)-5-methylchromone (3), altechromone A (4), norlichexanthone (5), griseoxanthone C (6), 1,3,5,6-tetrahydroxy-8-methylxanthone (7), griseofulvin (8), 6-O-desmethylgriseofulvin (9), dechlorogriseofulvin (10), and 5,6-dihydro-4-methyl-2H-pyran-2-one (11) were identified. The structures of the compounds were elucidated using spectroscopic analyses. The absolute configurations of the chiral centers of sajaroketides A and B were determined using time-dependent density functional theory (TDDFT)-based calculations of the Electronic Circular Dichroism (ECD) spectra. The inhibitory effects of these compounds on urease activity and the growth of Staphylococcus aureus, Escherichia coli, and Candida albicans were observed. Sajaroketide A, altechromone A, and griseofulvin showed significant cardioprotective effects in an in vitro model of S. aureus-induced infectious myocarditis.


Asunto(s)
Penicillium , Policétidos , Staphylococcus aureus , Estructura Molecular , Policétidos/química , Griseofulvina/farmacología , Hongos , Dicroismo Circular
3.
Metabolites ; 13(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37999234

RESUMEN

An Aspergillus fumigatus KMM 4631 strain was previously isolated from a Pacific soft coral Sinularia sp. sample and was found to be a source of a number of bioactive secondary metabolites. The aims of this work are the confirmation of this strain' identification based on ITS, BenA, CaM, and RPB2 regions/gene sequences and the investigation of secondary metabolite profiles of Aspergillus fumigatus KMM 4631 culture and its co-cultures with Penicillium hispanicum KMM 4689, Amphichorda sp. KMM 4639, Penicillium sp. KMM 4672, and Asteromyces cruciatus KMM 4696 from the Collection of Marine Microorganisms (PIBOC FEB RAS, Vladivostok, Russia). Moreover, the DPPH-radical scavenging activity, urease inhibition, and cytotoxicity of joint fungal cultures' extracts on HepG2 cells were tested. The detailed UPLC MS qTOF investigation resulted in the identification and annotation of indolediketopiperazine, quinazoline, and tryptoquivaline-related alkaloids as well as a number of polyketides (totally 20 compounds) in the extract of Aspergillus fumigatus KMM 4631. The metabolite profiles of the co-cultures of A. fumigatus with Penicillium hispanicum, Penicillium sp., and Amphichorda sp. were similar to those of Penicillium hispanicum, Penicillium sp., and Amphichorda sp. monocultures. The metabolite profile of the co-culture of A. fumigatus with Asteromyces cruciatus differed from that of each monoculture and may be more promising for the isolation of new compounds.

4.
Mar Drugs ; 21(11)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37999408

RESUMEN

Two new cyclopiane diterpenes and a new cladosporin precursor, together with four known related compounds, were isolated from the marine sediment-derived fungus Penicillium antarcticum KMM 4670, which was re-identified based on phylogenetic inference from ITS, BenA, CaM, and RPB2 gene regions. The absolute stereostructures of the isolated cyclopianes were determined using modified Mosher's method and quantum chemical calculations of the ECD spectra. The isolation from the natural source of two biosynthetic precursors of cladosporin from a natural source has been reported for the first time. The antimicrobial activities of the isolated compounds against Staphylococcus aureus, Escherichia coli, and Candida albicans as well as the inhibition of staphylococcal sortase A activity were investigated. Moreover, the cytotoxicity of the compounds to mammalian cardiomyocytes H9c2 was studied. As a result, new cyclopiane diterpene 13-epi-conidiogenone F was found to be a sortase A inhibitor and a promising anti-staphylococcal agent.


Asunto(s)
Diterpenos , Penicillium , Policétidos , Animales , Estructura Molecular , Policétidos/farmacología , Filogenia , Penicillium/química , Staphylococcus , Diterpenos/química , Sedimentos Geológicos , Mamíferos
5.
Microorganisms ; 11(10)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37894043

RESUMEN

The taxonomic status of two gram-negative, whitish-pigmented motile bacteria KMM 9576T and KMM 9553 isolated from a sandy sediment sample from the Sea of Japan seashore was defined. Phylogenetic analysis revealed that strains KMM 9576T and KMM 9553 represent a distinct lineage within the family Rhizobiaceae, sharing 100% 16S rRNA sequence similarity and 99.5% average nucleotide identity (ANI) to each other. The strains showed the highest 16S rRNA sequence similarities of 97.4% to Sinorhizobium garamanticum LMG 24692T, 96.9% to Ensifer adhaerens NBRC 100388T, and 96.8% to Pararhizobium giardinii NBRC 107135T. The ANI values between strain KMM 9576T and Ensifer adhaerens NBRC 100388T, Sinorhizobium fredii USDA 205T, Pararhizobium giardinii NBRC 107135T, and Rhizobium leguminosarum NBRC 14778T were 79.9%, 79.6%, 79.4%, and 79.2%, respectively. The highest core-proteome average amino acid identity (cpAAI) values of 82.1% and 83.1% were estimated between strain KMM 9576T and Rhizobium leguminosarum NBRC 14778T and 'Rhizobium album' NS-104, respectively. The DNA GC contents were calculated from a genome sequence to be 61.5% (KMM 9576T) and 61.4% (KMM 9553). Both strains contained the major ubiquinone Q-10 and C18:1ω7c as the dominant fatty acid followed by 11-methyl C18:1ω7c and C19:0 cyclo, and polar lipids consisted of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminophospholipid, and two unidentified phospholipids. Based on phylogenetic and phylogenomic analyses, and phenotypic characterization, strains KMM 9576T and KMM 9553 are concluded to represent a novel genus and species, for which the name Fererhizobium litorale gen. nov., sp. nov. is proposed. The type strain of the type species is strain KMM 9576T (=NRIC 0957T).

6.
Microorganisms ; 11(10)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37894121

RESUMEN

A novel Gram-staining negative, strictly aerobic, rod-shaped, and non-motile bacterium, designated strain 10Alg 79T, was isolated from the red alga Ahnfeltia tobuchiensis. A phylogenetic analysis based on 16S rRNA gene sequences placed the novel strain within the family Roseobacteraceae, class Alphaproteobacteria, phylum Pseudomonadota, where the nearest neighbor was Shimia sediminis ZQ172T (97.33% of identity). However, a phylogenomic study clearly showed that strain 10Alg 79T forms a distinct evolutionary lineage at the genus level within the family Roseobacteraceae combining with strains Aquicoccus porphyridii L1 8-17T, Marimonas arenosa KCTC 52189T, and Lentibacter algarum DSM 24677T. The ANI, AAI, and dDDH values between them were 75.63-78.15%, 67.41-73.08%, and 18.8-19.8%, respectively. The genome comprises 3,754,741 bp with a DNA GC content of 62.1 mol%. The prevalent fatty acids of strain 10Alg 79T were C18:1 ω7c and C16:0. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, an unidentified aminolipid, an unidentified phospholipid and an unidentified lipid. A pan-genome analysis showed that the unique part of the 10Alg 79T genome consists of 13 genus-specific clusters and 413 singletons. The annotated singletons were more often related to transport protein systems, transcriptional regulators, and enzymes. A functional annotation of the draft genome sequence revealed that this bacterium could be a source of a new phosphorylase, which may be used for phosphoglycoside synthesis. A combination of the genotypic and phenotypic data showed that the bacterial isolate represents a novel species and a novel genus, for which the name Rhodoalgimonas zhirmunskyi gen. nov., sp. nov. is proposed. The type strain is 10Alg 79T (=KCTC 72611T = KMM 6723T).

7.
Biomedicines ; 11(10)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37893056

RESUMEN

Diabetes mellitus is one of the most serious diseases of our century. The drugs used are limited or have serious side effects. The search for new sources of compounds for effective treatment is relevant. Magnificamide, a peptide inhibitor of mammalian α-amylases, isolated from the venom of sea anemone Heteractis magnifica, can be used for the control of postprandial hyperglycemia in diabetes mellitus. Using the RACE approach, seven isoforms of magnificamide were detected in H. magnifica tentacles. The exon-intron structure of magnificamide genes was first established, and intron retention in the mature peptide-encoding region was revealed. Additionally, an α-amylase inhibitory domain was discovered in the mucins of some sea anemones. According to phylogenetics, sea anemones diverge into two groups depending on the presence of ß-defensin-like α-amylase inhibitors and/or mucin-inhibitory domains. It is assumed that the intron retention phenomenon leads to additional diversity in the isoforms of inhibitors and allows for its neofunctionalization in sea anemone tentacles. Bioprospecting of sea anemones of the order Actiniaria for ß-defensin-like α-amylase inhibitors revealed a diversity of inhibitory sequences that represents a starting point for the design of effective glucose-lowering drugs.

8.
PLoS One ; 18(7): e0287346, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37494411

RESUMEN

Two Gram-negative, aerobic halophilic non-motile strains designated KMM 9713 and KMM 9724T were isolated from the bottom sediments sampled from the Chukchi Sea in the Arctic Ocean, Russia. The novel strains grew in 0.5-5% NaCl, at 7-42°C, and pH 5.5-10.5. Phylogenetic analyses based on 16S rRNA gene and whole genome sequences revealed that strains KMM 9713 and KMM 9724T were close to each other and shared the highest 16S rRNA gene sequence similarity of 91.28% with the type strain Ornithobacterium rhinotracheale DSM 15997T and 90.15-90.92% with the members of the genus Empedobacter in the family Weeksellaceae. Phylogenetic trees indicated that strains KMM 9713 and KMM 9724T formed a distinct line adjacent to their relative O. rhinotracheale DSM 15997T. The average nucleotide identity values between strain KMM 9724T and O. rhinotracheale DSM 15997T, Empedobacter brevis NBRC 14943T, and Moheibacter sediminis CGMCC 1.12708T were 76.73%, 75.78%, and 74.65%, respectively. The novel strains contained the predominant menaquinone MK-6 and the major fatty acids of iso-C17:0 3-OH, iso-C15:0 followed by iso-C17:1ω6. Polar lipids consisted of phosphatidylethanolamine, one an unidentified aminophospholipid, two unidentified aminolipids, and two or three unidentified lipids. The DNA G+C contents of 34.5% and 34.7% were calculated from genome sequence of the strains KMM 9713 and KMM 9724T, respectively. Based on the phylogenetic evidence and distinctive phenotypic characteristics, strains KMM 9713 and KMM 9724T are proposed to be classified as a novel genus and species Profundicola chukchiensis gen. nov., sp. nov. The type strain of Profundicola chukchiensis gen. nov., sp. nov. is strain KMM 9724T (= KACC 22806T).


Asunto(s)
Sedimentos Geológicos , Fosfolípidos , Fosfolípidos/análisis , Sedimentos Geológicos/microbiología , Filogenia , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana
9.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36835570

RESUMEN

Advances in the computational annotation of genomes and the predictive potential of current metabolic models, based on more than thousands of experimental phenotypes, allow them to be applied to identify the diversity of metabolic pathways at the level of ecophysiology differentiation within taxa and to predict phenotypes, secondary metabolites, host-associated interactions, survivability, and biochemical productivity under proposed environmental conditions. The significantly distinctive phenotypes of members of the marine bacterial species Pseudoalteromonas distincta and an inability to use common molecular markers make their identification within the genus Pseudoalteromonas and prediction of their biotechnology potential impossible without genome-scale analysis and metabolic reconstruction. A new strain, KMM 6257, of a carotenoid-like phenotype, isolated from a deep-habituating starfish, emended the description of P. distincta, particularly in the temperature growth range from 4 to 37 °C. The taxonomic status of all available closely related species was elucidated by phylogenomics. P. distincta possesses putative methylerythritol phosphate pathway II and 4,4'-diapolycopenedioate biosynthesis, related to C30 carotenoids, and their functional analogues, aryl polyene biosynthetic gene clusters (BGC). However, the yellow-orange pigmentation phenotypes in some strains coincide with the presence of a hybrid BGC encoding for aryl polyene esterified with resorcinol. The alginate degradation and glycosylated immunosuppressant production, similar to brasilicardin, streptorubin, and nucleocidines, are the common predicted features. Starch, agar, carrageenan, xylose, lignin-derived compound degradation, polysaccharide, folate, and cobalamin biosynthesis are all strain-specific.


Asunto(s)
Pseudoalteromonas , Pseudoalteromonas/genética , Genómica , Carotenoides/metabolismo , Glicosilación , Fenotipo , Filogenia
10.
Mar Drugs ; 21(2)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36827096

RESUMEN

C-type lectins (CTLs) are a family of carbohydrate-binding proteins that mediate multiple biological events, including adhesion between cells, the turnover of serum glycoproteins, and innate immune system reactions to prospective invaders. Here, we describe the cDNA cloning of lectin from the bivalve Glycymeris yessoensis (GYL), which encodes 161 amino acids and the C-type carbohydrate recognition domain (CRD) with EPN and WND motifs. The deduced amino acid sequence showed similarity to other CTLs. GYL is a glycoprotein containing two N-glycosylation sites per subunit. N-glycans are made up of xylose, mannose, D-glucosamine, 3-O-methylated galactose, D-quinovoses, and 3-O-methylated 6-deoxy-D-glucose. The potential CRD tertiary structure of the GYL adopted CTL-typical long-form double-loop structure and included three disulfide bridges at the bases of the loops. Additionally, when confirming the GYL sequence, eight isoforms of this lectin were identified. This fact indicates the presence of a multigene family of GYL-like C-type lectins in the bivalve G. yessoensis. Using the glycan microarray approach, natural carbohydrate ligands were established, and the glycotope for GYL was reconstructed as "Galß1-4GlcNAcß obligatory containing an additional fragment", like a sulfate group or a methyl group of fucose or N-acetylgalactosamine residues.


Asunto(s)
Bivalvos , Lectinas Tipo C , Animales , Estudios Prospectivos , Lectinas Tipo C/metabolismo , Carbohidratos , Bivalvos/química , Polisacáridos/química , Clonación Molecular
11.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203394

RESUMEN

Sulfated polysaccharides of brown algae, fucoidans, are known for their anticoagulant properties, similar to animal heparin. Their complex and irregular structure is the main bottleneck in standardization and in defining the relationship between their structure and bioactivity. Fucoidan-active enzymes can be effective tools to overcome these problems. In the present work, we identified the gene fwf5 encoding the fucoidan-active endo-fucanase of the GH168 family in the marine bacterium Wenyingzhuangia fucanilytica CZ1127T. The biochemical characteristics of the recombinant fucanase FWf5 were investigated. Fucanase FWf5 was shown to catalyze the endo-type cleavage of the 1→4-O-glycosidic linkages between 2-O-sulfated α-L-fucose residues in fucoidans composed of the alternating 1→3- and 1→4-linked residues of sulfated α-L-fucose. This is the first report on the endo-1→4-α-L-fucanases (EC 3.2.1.212) of the GH168 family. The endo-fucanase FWf5 was used to selectively produce high- and low-molecular-weight fucoidan derivatives containing either regular alternating 2-O- and 2,4-di-O-sulfation or regular 2-O-sulfation. The polymeric 2,4-di-O-sulfated fucoidan derivative was shown to have significantly greater in vitro anticoagulant properties than 2-O-sulfated derivatives. The results have demonstrated a new type specificity among fucanases of the GH168 family and the prospects of using such enzymes to obtain standard fucoidan preparations with regular sulfation and high anticoagulant properties.


Asunto(s)
Endometriosis , Fucosa , Animales , Femenino , Humanos , Catálisis , Anticoagulantes/farmacología , Polisacáridos , Sulfatos
12.
Toxins (Basel) ; 14(10)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36287966

RESUMEN

The nicotinic acetylcholine receptors (nAChRs) are prototypical ligand-gated ion channels, provide cholinergic signaling, and are modulated by various venom toxins and drugs in addition to neurotransmitters. Here, four APETx-like toxins, including two new toxins, named Hmg 1b-2 Metox and Hmg 1b-5, were isolated from the sea anemone Heteractis magnifica and characterized as novel nAChR ligands and acid-sensing ion channel (ASIC) modulators. All peptides competed with radiolabeled α-bungarotoxin for binding to Torpedo californica muscle-type and human α7 nAChRs. Hmg 1b-2 potentiated acetylcholine-elicited current in human α7 receptors expressed in Xenopus laevis oocytes. Moreover, the multigene family coding APETx-like peptides library from H. magnifica was described and in silico surface electrostatic potentials of novel peptides were analyzed. To explain the 100% identity of some peptide isoforms between H. magnifica and H. crispa, 18S rRNA, COI, and ITS analysis were performed. It has been shown that the sea anemones previously identified by morphology as H. crispa belong to the species H. magnifica.


Asunto(s)
Receptores Nicotínicos , Anémonas de Mar , Toxinas Biológicas , Animales , Humanos , Anémonas de Mar/química , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Bungarotoxinas , Canales Iónicos Sensibles al Ácido , Acetilcolina/metabolismo , Ligandos , ARN Ribosómico 18S/metabolismo , Toxinas Biológicas/metabolismo , Péptidos/química , Colinérgicos/metabolismo
13.
Arch Microbiol ; 204(9): 548, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35945400

RESUMEN

A Gram-negative, aerobic, non-motile bacterium КMM 9862T was isolated from a deep bottom sediment sample obtained from the Okhotsk Sea, Russia. Based on the 16S rRNA gene and whole genome sequences analyses the novel strain КMM 9862T fell into the genus Microbulbifer (class Gammaproteobacteria) sharing the highest 16S rRNA gene sequence similarities of 97.4% to Microbulbifer echini AM134T and Microbulbifer epialgicus F-104T, 97.3% to Microbulbifer pacificus SPO729T, 97.1% to Microbulbifer variabilis ATCC 700307T, and similarity values of < 97.1% to other recognized Microbulbifer species. The average nucleotide identity and digital DNA-DNA hybridization values between strain КMM 9862T and M. variabilis ATCC 700307T and M. thermotolerans DSM 19189T were 80.34 and 77.72%, and 20.2 and 19.0%, respectively. Strain КMM 9862T contained Q-8 as the predominant ubiquinone and C16:0, C16:1 ω7c, C12:0, and C10:0 3-OH as the major fatty acids. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, an unidentified aminophospholipid, an unidentified aminolipid, two unidentified phospholipids, phosphatidic acid, and an unidentified lipid. The DNA G+C content of 49.8% was calculated from the genome sequence. On the basis of the phylogenetic evidence and distinctive phenotypic characteristics, the marine bacterium KMM 9862T is proposed to be classified as a novel species Microbulbifer okhotskensis sp. nov. The type strain of the species is strain KMM 9862T (= KACC 22804T).


Asunto(s)
Alteromonadaceae , Sedimentos Geológicos , Alteromonadaceae/genética , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/análisis , Sedimentos Geológicos/microbiología , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
14.
Arch Microbiol ; 204(8): 487, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35835927

RESUMEN

A novel Gram-staining negative, strictly aerobic, rod-shaped, and non-motile bacterium, designated strain 9Alg 56T, was isolated from the red alga Tichocarpus crinitus. The phylogenetic analysis based on 16S rRNA gene sequences placed the novel strain within the family Rhodobacteraceae, the order Rhodobacterales, the class Alphaproteobacteria, the phylum Pseudomonadota. The nearest neighbors of the new strain were Pontivivens insulae KCTC 42458T, Oceanibium sediminis KCTC 62076T, Halovulum dunhuangense YYQ-30T and Monaibacterium marinum C7T with 16S rRNA gene sequence similarity of 94.7, 94.4%, 93.1 and 92.7%, respectively. The AAI/ANI/dDDH values between 9Alg 56T and the five species of the closest genera (Pontivivens, Oceanibium, Halovulum, Monaibacterium, and 'Oceanomicrobium') were 58.63-63.91%/ 75.91-77.37%/ 19.3-20.4%. The prevalent fatty acids of strain 9Alg 56T were C18:1 ω7c, C18:0 and C14:0 3-OH. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, phosphatidic acid, phosphatidylcholine, and two unidentified lipids. The DNA G+C content of strain 9Alg 56T was 61.5 mol%. A combination of the genotypic and phenotypic data showed that the algal isolate represents a novel genus and species, for which the name Algicella marina gen. nov., sp. nov. is proposed. The type strain is 9Alg 56T (= KCTC 72005T = KMM 6775T).


Asunto(s)
Rhodobacteraceae , Rhodophyta , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/análisis , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , Rhodophyta/microbiología , Análisis de Secuencia de ADN
15.
Biochim Biophys Acta Biomembr ; 1864(9): 183971, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35643329

RESUMEN

The recombinant OmpF porin of Yersinia pseudotuberculosis as a model of transmembrane protein of the ß-barrel structural family was used to study low growth temperature effect on the structure of the produced inclusion bodies (IBs). This porin showed a very low expression level in E. coli at a growth temperature below optimal 37 °C. The introduction of a N-terminal hexahistidine tag into the mature porin molecule significantly increased the biosynthesis of the protein at low cultivation temperatures. The recombinant His-tagged porin (rOmpF-His) was expressed in E. coli at 30 and 18 °C as inclusion bodies (IB-30 and IB-18). The properties and structural organization of IBs, as well as the structure of rOmpF-His solubilized from the IBs with urea and SDS, were studied using turbidimetry, electron microscopy, dynamic light scattering, optical spectroscopy, and amyloid-specific dyes. IB-18, in comparison with IB-30, has a higher solubility in denaturants, suggesting a difference between IBs in the conformation of the associated polypeptide chains. The spectroscopic analysis revealed that rOmpF-His IBs have a high content of secondary structure with a tertiary-structure elements, including a native-like conformation, the proportion of which in IB-18 is higher than in IB-30. Solubilization of the porin from IBs is accompanied by a modification of its secondary structure. The studied IBs also contain amyloid-like structures. The results obtained in this study expand our knowledge of the structural organization of IBs formed by proteins of different structural classes and also have a contribution into the new approaches development of producing functionally active recombinant membrane proteins.


Asunto(s)
Cuerpos de Inclusión , Proteínas Recombinantes , Yersinia pseudotuberculosis , Escherichia coli/genética , Escherichia coli/metabolismo , Cuerpos de Inclusión/metabolismo , Porinas/química , Porinas/genética , Proteínas Recombinantes/biosíntesis , Temperatura , Yersinia pseudotuberculosis/metabolismo
16.
Arch Microbiol ; 204(2): 153, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35088166

RESUMEN

A Gram stain-negative, aerobic, rod-shaped, motile by gliding and yellow-orange-pigmented bacterium, designated strain 10Alg 115T, was isolated from the red alga Ahnfeltia tobuchiensis. The phylogenetic analysis based on 16S rRNA gene sequences placed the novel strain within the family Flavobacteriaceae, phylum Bacteroidetes. The nearest neighbor of the new isolate was Aureibaculum marinum KCTC 62204T with sequence similarity of 98.1%. The average nucleotide similarity and digital DNA-DNA hybridization values between the novel strain and Aureibaculum marinum KCTC 62204T were 80% and 22.3%, respectively. The prevalent fatty acids of strain 10Alg 115T were iso-C15:0, iso-C15:1 G, iso-C17:0 3-OH, iso-C16:0 3-OH and C15:0. The polar lipid profile consisted of phosphatidylethanolamine, two unidentified aminolipids and two unidentified lipids. The DNA G + C content of the type strain calculated from the whole-genome sequence was 32.2 mol%. A combination of the genotypic and phenotypic data showed that the algal isolate represents a novel species of the of genus Aureibaculum, for which the name Aureibaculum algae sp. nov. is proposed. The type strain is 10Alg 115T (= KCTC 62086T = KMM 6764T).


Asunto(s)
Flavobacteriaceae , Rhodophyta , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/análisis , Flavobacteriaceae/genética , Filogenia , ARN Ribosómico 16S/genética , Rhodophyta/genética , Análisis de Secuencia de ADN , Vitamina K 2
17.
Mar Drugs ; 19(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34940653

RESUMEN

The peculiarities of the survival and adaptation of deep-sea organisms raise interest in the study of their metabolites as promising drugs. In this work, the hemolytic, cytotoxic, antimicrobial, and enzyme-inhibitory activities of tentacle extracts from five species of sea anemones (Cnidaria, orders Actiniaria and Corallimorpharia) collected near the Kuril and Commander Islands of the Far East of Russia were evaluated for the first time. The extracts of Liponema brevicorne and Actinostola callosa demonstrated maximal hemolytic activity, while high cytotoxic activity against murine splenocytes and Ehrlich carcinoma cells was found in the extract of Actinostola faeculenta. The extracts of Corallimorphus cf. pilatus demonstrated the greatest activity against Ehrlich carcinoma cells but were not toxic to mouse spleen cells. Sea anemones C. cf. pilatus and Stomphia coccinea are promising sources of antimicrobial and antifungal compounds, being active against Gram-positive bacteria Bacillus subtilis, Staphylococcus aureus, and yeast Candida albicans. Moreover, all sea anemones contain α-galactosidase inhibitors. Peptide mass fingerprinting of L. brevicorne and C. cf. pilatus extracts provided a wide range of peptides, predominantly with molecular masses of 4000-5900 Da, which may belong to a known or new structural class of toxins. The obtained data allow concluding that deep-sea anemones are a promising source of compounds for drug discovery.


Asunto(s)
Anémonas de Mar , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Organismos Acuáticos , Candida albicans/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Descubrimiento de Drogas , Bacterias Grampositivas/efectos de los fármacos , Toxinas Marinas/química , Federación de Rusia
18.
Molecules ; 26(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203552

RESUMEN

Here, we investigated general porin regulation in Yersinia pseudotuberculosis 488, the causative agent of Far Eastern scarlet-like fever, in response to sublethal concentrations of antibiotics. We chose four antibiotics of different classes and measured gene expression using qRT-PCR and GFP reporter systems. Our data showed temporal regulation of the general porin genes ompF and ompC caused by antibiotic stress. The porin transcription initially decreased, providing early defensive response of the bacterium, while it returned to that of the untreated cells on prolonged antibiotic exposure. Unlike the major porin genes, the transcription of the alternative porin genes ompX and lamB was increased. Moreover, a short-term ompR- and marA-mediated porin regulation was observed. The main finding was a phenotypic heterogeneity of Y. pseudotuberculosis population manifested in variable porin gene expression under carbenicillin exposure. This may offer adaptive fitness advantages for a particular bacterial subpopulation.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/biosíntesis , Carbenicilina/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Porinas/biosíntesis , Estrés Fisiológico/efectos de los fármacos , Yersinia pseudotuberculosis/metabolismo
19.
Arch Microbiol ; 203(7): 3973-3979, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34036410

RESUMEN

A Gram-negative, non-motile bacterium КMM 3653T was isolated from a sediment sample from the Sea of Japan seashore, Russia. On the basis of the 16S rRNA gene sequence analysis the strain КMM 3653T was positioned within the family Rhodobacteraceae (class Alphaproteobacteria) forming a distinct lineage with the highest gene sequence similarities to the members of the genera Pacificibacter (95.2-94.7%) and Nioella (95.1-94.5%), respectively. According to the phylogenomic tree based on 400 conserved protein sequences, strain КMM 3653T was placed in the cluster comprising Vannielia litorea, Nioella nitratireducens, Litoreibacter albidus and Pseudoruegeria aquimaris as a separate lineage adjacent to V. litorea KCTC 32083T. The average nucleotide identity values between strain КMM 3653T and V. litorea KCTC 32083T, N. nitratireducens KCTC 32417T, L. albidus KMM 3851T, and P. aquimaris CECT 7680T were 71.1, 70.3, 69.6, and 71.0%, respectively. Strain КMM 3653T contained Q-10 as the predominant ubiquinone and C18:1ω7c as the major fatty acid followed by C16:0. The polar lipids were phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid, two unidentified aminolipids, and five unidentified lipids. The DNA G+C content of 61.8% was calculated from the genome sequence. Based on the phylogenetic evidence and distinctive phenotypic characteristics, we proposed strain KMM 3653T (= KCTC 82575T) to be classified as a novel genus and species Harenicola maris gen. nov., sp. nov.


Asunto(s)
Sedimentos Geológicos , Rhodobacteraceae , Sedimentos Geológicos/microbiología , Océanos y Mares , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , Rhodobacteraceae/clasificación , Rhodobacteraceae/genética , Federación de Rusia , Especificidad de la Especie
20.
Molecules ; 26(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924031

RESUMEN

We carried out a detailed investigation of PL7 alginate lyases across the Zobellia genus. The main findings were obtained using the methods of comparative genomics and spatial structure modeling, as well as a phylogenomic approach. Initially, in order to elucidate the alginolytic potential of Zobellia, we calculated the content of polysaccharide lyase (PL) genes in each genome. The genus-specific PLs were PL1, PL6, PL7 (the most abundant), PL14, PL17, and PL40. We revealed that PL7 belongs to subfamilies 3, 5, and 6. They may be involved in local and horizontal gene transfer and gene duplication processes. Most likely, an individual evolution of PL7 genes promotes the genetic variability of the Alginate Utilization System across Zobellia. Apparently, the PL7 alginate lyases may acquire a sub-functionalization due to diversification between in-paralogs.


Asunto(s)
Flavobacteriaceae/enzimología , Genoma Bacteriano/genética , Genómica , Polisacárido Liasas/genética , Alginatos/química , Flavobacteriaceae/clasificación , Flavobacteriaceae/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...